ISSN 2146-832X
 

Review Article 


Therapeutic potential of metals in managing diabetes mellitus: a review

Geeta Pandey, Gyan Chand Jain, Nidhi Mathur.

Cited by (5)

Abstract
Diabetes mellitus (DM) represents one of the greatest threats to modern global health. Diabetes mellitus is characterized by chronic elevation of blood glucose concentration as a consequence of decreased blood insulin levels or decreased action of insulin. In order to prevent or delay the onset of such complications, tight control of fasting and postprandial blood glucose levels is a central aspect of diabetes treatment. Development of new therapies that are able to improve glycemia management, cure diabetes, and can even protect from it, are of great interest. Metal compounds proposed to have the potential to elicit beneficial effect in the pathogenesis and complication of the disease. The idea of using metal ions for the treatment of diabetes originates from the report in 1899. Vanadium, chromium, copper, cobalt, tungsten and zinc were found to be effective for treating diabetes in experimental animals. Results from long-term trials are needed in order to assess the safety and beneficial role of these metals as complementary therapies in the management of diabetes. The present review includes the therapeutic potential of some metals showing promising result in the treatment of diabetes.

Key words: Hyperglycemia; diabetes mellitus; metals; pathogenesis; therapeutic potential


 
ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Geeta Pandey
Articles by Gyan Chand Jain
Articles by Nidhi Mathur
on Google
on Google Scholar
Article Statistics
 Viewed: 5451
Downloaded: 989
Cited: 5

REFERENCES
1. Wild S, Roglic K, Green A, Sicree R, King H. Global prevalence of diabetes. Estimation for the year 2000 and projections for 2030. Diabetes Care 2004; 27:1047-1053. PubMed: 15451946 [DOI via Crossref]    [Pubmed]   
2. ADA. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004; 27 (suppl 1): S5-S10. [DOI via Crossref]    [DOI via Crossref]   
3. WHO. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. 1999; http://www.staff.ncl.ac.uk/philip.home/who_dmg.pdf
4. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405-412. [DOI via Crossref]    [DOI via Crossref]   
5. Bhor VM, Raghuram N, Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin induced diabetic rats. Int J Biochem Cell Biol 2004; 36: 89-97. [DOI via Crossref]    [DOI via Crossref]   
6. Rajarajeswari N, Pari L. Antioxidant Role of Coumarin on Streptozotocin- Nicotinamide-Induced Type II Diabetic Rats. J Biochem Mol Toxicol 2011; 25(6): 355-61. [DOI via Crossref]    [DOI via Crossref]   
7. Halliwell B, Gutteridge JMC. Lipid peroxidation oxygen radicals, cell damage and antioxidant therapy. Lancet 1994; 1: 1396-1397. [DOI via Crossref]    [DOI via Crossref]   
8. Wohaieb SA, Godin DV. Alterations in free radical tissue defense mechanism in streptozotocin-induced diabetes in rats. Effects of insulin treatment. Diabetes 1987; 36:1014-1018. [DOI via Crossref]    [DOI via Crossref]   
9. Sakurai H, Yasui H, Adachi Y. The therapeutic potential of insulin-mimetic vanadium complexes. journal 2003;12(7): 1189-1203 .[DOI via Crossref]    [DOI via Crossref]   
10. WHO. Prevention of diabetes mellitus. Technical Report Series WHO. Geneva 1994; 844-848.
11. Pari L, Uma MJ. Hypoglycaemic effect of Musa sapientum L. in alloxan-induced diabetic rats. J Ethnopharmacol 1999; 68:321-325. [DOI via Crossref]   
12. Bharti SK, Singh SK. Metal Based Drugs: Current Use and Future Potential. Der. Pharmacia. Lettre. 2009; 1(2): 39-51. http://scholarsresearchlibrary.com/DPL-second-issue/5.DPL-1_2_39-51.pdf
13. Rafique S, Idrees M., Nasim A, Akbar H, Athar A. Transition metal complexes as potential therapeutic agents. Biotech Mol Biol Rev 2010; 5(2): 38-45. http://www.academicjournals.org/bmbr/PDF/Pdf2010/April/Rafique%20et%20al.pdf
14. Wiernsperger N, Rapin JR. Trace elements in glucometabolic disorders:an update. Diabetol Metabol Syn 2010; 2: 70. [DOI via Crossref]    [DOI via Crossref]   
15. Sakurai H, Katoh A, Kiss T, Jakusch T, Hattori M. Metallo-allixinate complexes with anti-diabetic and anti-metabolic syndrome activities .Metallomics 2010; 2: 670-682. [DOI via Crossref]    [DOI via Crossref]   
16. Stearns DM. Is chromium a trace essential metal? BioFactors 2000; 11: 149-162. [DOI via Crossref]    [DOI via Crossref]   
17. Schwarz K, Mertz W. Chromium (III) and the glucose tolerance factor. Arch Biochem Biophys 1959; 85: 292-295. [DOI via Crossref]   
18. Havel PJ. A scientific review: the role of chromium in insulin resistance. Diabetes Educ 2004; 30 (3 Suppl.): 2-14. [Pubmed]   
19. Levina A, Lay PA. Chemical Properties and Toxicity of Chromium (III) Nutritional Supplements. Chem Res Toxicol 2008; 21: 563-571. [DOI via Crossref]    [DOI via Crossref]   
20. Vincent JB. Recent advances in the nutritional biochemistry of trivalent chromium. Proc Nutr Soc 2004; 63: 41-47. [DOI via Crossref]    [DOI via Crossref]   
21. Anderson RA, Polansky MM, Bryden NA. Stability and absorption of chromium and absorption of chromium histidinate complexes by humans. Biol Trace Elem Res 2004; 1013: 211-218. [DOI via Crossref]    [DOI via Crossref]   
22. Dogukan A, Sahin N, Tuzcu M, Juturu V, Orhan C. The Effects of Chromium Histidinate on Mineral Status of Serum and Tissue in Fat-Fed and Streptozotocin-Treated Type II Diabetic Rats. Biol Trace Elem Res 2009; 131 (2): 124-132. [DOI via Crossref]    [DOI via Crossref]   
23. Yang X, Li S, Dong F, Ren J, Sreejayan N. Insulin-sensitizing and cholesterol-lowering effects of chromium (D-Phenylalanine) 3. J Inorg Biochem 2006; 100: 1187-1193 [DOI via Crossref]    [DOI via Crossref]   
24. Jensen NL. Chromium nicotinate as synthetic glucose tolerance factor and its preparation. United States Patent 4923855.Chem Abstr 1989; 113: 171885
25. Ashmead HD, Ashmead HH, Jeppsen RB. Composition and method for alleviating stress in warm-blooded animals. United States Patent 5614553, 1997. http://www.patentgenius.com/patent/5614553.html
26. Sahin K, Onderci M, Tuzcu M, Ustundag B, Cikim, G, Ozercan IH, Sriramoju V, Juturu V, Komorowski JR. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type II diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metabolism. 2007; 56(9): 1233-40. [DOI via Crossref]    [DOI via Crossref]   
27. Kim D, Kim T, Kang J. Chromium picolinate supplementation improves insulin sensitivity in Goto-Kakizaki diabetic rats. J Trace Elem Med Biol 2004; 17(4): 243-247. [DOI via Crossref]   
28. Balk EM, Tatsioni A, Lichtenstein AH, Lau J, Pittas AG. Effect of Chromium Supplementation on Glucose Metabolism and Lipids Diabetes care 2007; 30(8): 2154-2163. [DOI via Crossref]    [DOI via Crossref]   
29. Anderson RA, Cheng N, Bryden NA, Polansky MM, Chi J, Feng J. Beneficial effects of chromium for people with diabetes. Diabetes 1997; 46: 1786-1791. [DOI via Crossref]    [Pubmed]   
30. Ghosh D, Bhattacharyaa B, Mukherjeeb B, Mannac B, Sinhaa M, Chowdhurya J, Chowdhury S. Role of chromium supplementation in Indians with type II diabetes mellitus. J Nut Biochem 2002; 13: 690-697. [DOI via Crossref]    [DOI via Crossref]   
31. Wang Y, Yao M. Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK. J Nut Biochem 2009; 20: 982-991. [DOI via Crossref]    [DOI via Crossref]   
32. Horvath EM, Tackett L, McCarthy AM, Raman P, Brozinick JT, Elmendorf JS Antidiabetogenic effects of chromium mitigate hyperinsulinemia-induced cellular insulin resistance via correction of plasma membrane cholesterol imbalance. Mol Endocrinol 2008; 22: 937-950. [DOI via Crossref]    [DOI via Crossref]   
33. Saker F, Ybarra J, Leahy P et al. Glycemia-lowering effect of cobalt chloride in the diabetic rat: role of decreased gluconeogenesis. Am J Physiol Endocrinol Metab 1998; 274: E984-E991. http://ajpendo.physiology.org/content/274/6/E984.full
34. Ybarra J, Behrooz A, Gabriel A, Koseoglu MH, Ismail-Beigi F. Glycemia-lowering effect of cobalt chloride in the diabetic rat: increased GLUT1 mRNA expression Molecular and Cellular Endocrinology 1997; 133(2): 151-160. [DOI via Crossref]    [DOI via Crossref]   
35. Nomura Y, Okamoto S, Sakamoto M, Feng Z and Nakamura T. Effect of cobalt on the liver glycogen content in the streptozotocin-induced diabetic rats Mol Cell Biochem 2005; 277(1-2): 127-130 [DOI via Crossref]    [DOI via Crossref]   
36. Mine T, Kimura S, Osawa H, Ogata E. Inhibition of the glycogenolytic effects of alpha-adrenergic stimulation and glucagon by cobalt ions in perfused rat liver. Life Sci 1986; 38(25): 2285-2292. [Pubmed]    [DOI via Crossref]   
37. Vasudevan H, McNeill JH. Chronic cobalt treatment decreases hyperglycemia in streptozotocin-diabetic rats. Biometals 2007; 20(2): 129-134.[DOI via Crossref]    [DOI via Crossref]   
38. Vaidya N, Choure R. The role of Co (II) in the increased medicinal potency of glimepiride analyzed by electrochemical methods. J Appl Biol Pharm 2011; 2(1): 261-264. http://www.ijabpt.com/pdf/66044-II-Dr%5B1%5D.Rakesh%20Choure.pdf
39. Talba T, Shui XW, Cheng Q, Tian X. Antidiabetic effect of glucosaminic acid-cobalt (II) chelate in streptozotocin-induced diabetes in mice. Diabetes Metab Syndr Obes.2011; 4: 137-140. [DOI via Crossref]    10.2147/DMSO.S18025 [DOI via Crossref]   
40. Yildirim O, Buyukbingol Z. Effect of cobalt on the oxidative status in heart and aorta of streptozotocin-induced diabetic rats. Cell Biochem Func 2002; 21(1):27-33 [DOI via Crossref]    [DOI via Crossref]   
41. Yildirim, O. 2009. The effect of vitamin C and cobalt supplementation on antioxidant status in healthy and diabetic rats. Afr. J. Biotech. 8(19):5053-5058 http://www.academicjournals.org/AJB/abstracts/abs2009/5Oct/Yildirim.htm
42. Shukla D, Saxena S, Jayamurthy P, Sairam M, Singh M, Jain SK, Bansal A and Ilavazaghan G. Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs. High Alt Med Biol 2009; 10(1): 57-69. [DOI via Crossref]    [DOI via Crossref]   
43. Ferns GAA, Lamb DJ, Taylor A. The possible role of copper ions in atherogenesis: the Blue Janus Atheroscl 1997; 133: 139-52. [DOI via Crossref]    [DOI via Crossref]   
44. Sorenson JR. Copper complexes offer a physiological approach to treatment of chronic diseases. J Prog Med Chem 1989; 26: 437-568.[DOI via Crossref]    [DOI via Crossref]   
45. Harris ED. Basic and clinical aspects of copper. Crit Rev Clin Lab Sci 2003; 40: 547-586. [Pubmed]    [Pubmed]   
46. Walter JRM, Uriu-Hare JY, Olin KL, Oster MH, Anawalt BD, Critchfield JW et al. Copper, zinc, manganese, and magnesium status and complications of diabetes mellitus. Diabetes Care 1991; 14: 1050-1056. [Pubmed]    [DOI via Crossref]    [Pubmed]   
47. Kubisch HM, Wang J, Luche R, Carlson E, Bray TM, Epstein CJ et al. Transgenic copper/zinc superoxide dismutase modulates susceptibility to type I diabetes. Proc Natl Acad Sci 1994; 91: 9956-9959. [Pubmed]    [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
48. Abdul-Ghani AS, Abu-Hijleh AL, Nahas N, Amin R. Hypoglycemic effect of copper (II) acetate imidazole complexes. Biol Trac Ele Res 1996; 54(2), 143-151.[DOI via Crossref]    [DOI via Crossref]   
49. Yasumatsu N, Yoshikawa Y, Adachi Y and Sakurai H. Antidiabetic copper (II)-picolinate: Impact of the first transition metal in the metallopicolinate complexes. Bioorg Med Chem 2007; 15: 4917-4922 [DOI via Crossref]    [DOI via Crossref]   
50. Barthel A, Ostrakhovitch EA, Walter PL, Kampkötter A, Klotz LO. Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: mechanisms and consequences. Arch Biochem Biophys 2007; 463(2): 175-182.[DOI via Crossref]    [DOI via Crossref]   
51. Tanaka A, Kaneto H, Miyatsuka T, Yamamoto K, Yoshiuchi K, Yamasaki Y, Shimomura I, Matsuoka TA, Matsuhisa M. Role of copper ion in the pathogenesis of type II diabetes. Endocr J 2009; 56(5): 699-706. [DOI via Crossref]    [Pubmed]   
52. Sitasawad S, Deshpande M, Katdare M, Tirth S, Parab P. Beneficial effect of supplementation with copper sulfate on STZ-diabetic mice (IDDM). Diab Res Clin Prac 2001; 52(2): 77-84. [DOI via Crossref]    [DOI via Crossref]   
53. Ostrakhovitch EA, Cherian MG. Differential regulation of signal transduction pathways in wild type and mutated p53 breast cancer epithelial cells by copper and zinc. Arch Biochem Biophys 2004; 423: 351-361. [DOI via Crossref]    [DOI via Crossref]   
54. Kolterman OG, Gray RS, Griffin J, Burstein P, Insel J, Scarlett JA, Olefsky JM. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J Clin Invest 1981; 68(4): 957-969. [DOI via Crossref]    [DOI via Crossref]   
55. Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophy 2007; 458(1): 40-47. [DOI via Crossref]    [DOI via Crossref]   
56. Valk HW. Magnesium in diabetes mellitus. Neth J Med 1999; 54(4): 139-146 [DOI via Crossref]   
57. Sales CH, Pedrosa Lde F. Magnesium and diabetes mellitus: their relation. Clin Nutr 2006; 25(4): 554-562. [DOI via Crossref]    [DOI via Crossref]   
58. Elamin A, Tuvemo T. Magnesium and insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 1990; 10(3): 203-209. [DOI via Crossref]    [DOI via Crossref]   
59. Lima M, Cruz T, Pousada JC, Rodrigues LE, Barbosa K, Cangucu V. The effect of magnesium supplementation in increasing doses on the control of type II diabetes. Diabetes Care 1998; 21: 682-686. [DOI via Crossref]    [DOI via Crossref]   
60. Suarez A, Pulido N, Casla A, Casanova B, Arrieta FJ, Rovira A. Impaired tyrosinekinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia 1995; 38: 1262-1270.[DOI via Crossref]    [DOI via Crossref]   
61. Balon TW, Gu JL, Tokuyama Y, Jasman AP, Nadler JL. Magnesium supplementation reduces development of diabetes in a rat model of spontaneous NIDDM. Am J Physiol 1995; 269: E745-52. [Pubmed]    [Pubmed]   
62. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium: an update on physiological, clinical and analytical aspects. Clin Chim Acta 2000; 294: 1-26. [DOI via Crossref]    [DOI via Crossref]   
63. Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I et al. Anti-hyperglycemic activity of zinc plus cyclo (his-pro) in genetically diabetic Goto-Kakizaki and aged rats. Exp Biol Med 2004; 228(11): 1338-45. [Pubmed]   
64. Lee S, Park HK, Son SP, Lee CW, Kim IJ, Kim HJ. Effects of oral magnesium supplementation on insulin sensitivity and blood pressure in normo-magnesemic nondiabetic overweight Korean adults. Nutrition, Metabolism and Cardiovascular Diseases 2009; 19(11): 781-788. [DOI via Crossref]    [DOI via Crossref]   
65. Mooren FC, Krüger K, Völker K, Golf SW, Wadepuhl M, Kraus A. Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects - a double-blind, placebo-controlled, randomized trial. Diabetes Obes Metab 2011; 13 (3): 281-284.[DOI via Crossref]    [DOI via Crossref]   
66. Guerrero-Romero F, Rodríguez-Morán M. Magnesium improves the beta-cell function to compensate variation of insulin sensitivity: double-blind, randomized clinical trial. Eur J Clin Invest 2011; 41(4): 405-10.[DOI via Crossref]    [DOI via Crossref]   
67. Nielsen FH. Ultra trace minerals. In: Shils M, Olson JA, Shike M, Ross AC (Eds). Nutrition in Health and Disease, 9th Ed. Baltimore: Williams and Wilkins. 283, 1999.
68. Leach RM, Harris ED. Manganese. In: O’Dell BL, Sunde RA (Ed). Handbook of nutritionally essential mineral elements. Marcel Dekker Inc., New York, NY. 335-356, 1997.
69. Nicoloff G, Mutaftchievet K, Starshimirov D, Petrova C. Serum manganese in children with diabetes mellitus type I. 2004; 33(2): 47-51. http://www.idb.hr/diabetologia/04no2-2.pdf
70. Olcott AP, Tocco G, Tian J, Zekzer D, Fukuto J, Ignarro L, Kaufman DL. A Salen-Manganese Catalytic Free Radical Scavenger Inhibits Type I Diabetes and Islet Allograft Rejection. Diabetes 2004; 53(10): 2574-2580. [DOI via Crossref]    [DOI via Crossref]   
71. Gluck I, Anguelova T, Heimark D, Larner J. Synergistic effects of d-chiro-inositol and manganese on blood glucose and body weight of streptozotocin-induced diabetic rats. Curr Bioact Compd 2010; 6: 90-96. http://www.chirositol.com/pdf/Chirositol%20Animal%20Study%20June%202010.pdf
72. Subasinghe S, Greenbaum AL and McLean P. The insulin mimetic action of Mn (II): Involvement of cyclic nucleotide and insulin in the regulation of hepatic hexokinase and glucokinase. Biochem Med 1985; 34: 83-92.[DOI via Crossref]    [DOI via Crossref]   
73. Kunjara S, Wang DY, Greenbaum AL, McLean P, Kurtz A, Rademacher TW. Inositol phosphoglycans in diabetes and obesity: urinary levels of IPG A-type and IPG P-type, and relationship to pathophysiological changes. Mol Genet Metab 1999; 68: 488-502. [DOI via Crossref]    [Pubmed]   
74. McLean P, Kunjara S, Greenbaum AL, Gumaa K, López-Prados J, Martin-Lomas M, Rademacher TW. Reciprocal control of pyruvate dehydrogenase kinase and phosphatase by inositol phosphoglycan. Dynamic state set by "push-pull" system. J Biol Chem 2008; 28: 33428-33436. [DOI via Crossref]    [DOI via Crossref]   
75. Tian G, Kanea LS, Holmesb WD, Davisc ST. Modulation of cyclin-dependent kinase 4 by binding of magnesium (II) and manganese (II). Biophys Chem 2002; 95(1): 79-90. http://dx.doi.org/10.1016/S0301-4622(01)00251-4, [DOI via Crossref]   
76. Lord SJ, Epstein NA, Paddock RL, Vogels CM, Hennigar TL, Zaworotko MJ et al.. Synthesis, characterization, and biological relevance of hydroxypyrone and hydroxypyridinone complexes of molybdenum. Can J Chem 1999; 77(7): 1249-1261. [DOI via Crossref]    [DOI via Crossref]   
77. Fillat C, Rodriguez-Gil JE, Guinovart JJ Molybdate and tungstate act like vanadate on glucose metabolism in isolated hepatocytes. Biochem J 1992; 282: 659-663.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1130838/pdf/biochemj00139-0047.pdf [Pubmed]    [PMC Free Fulltext]   
78. Goto Y, Kida K, Ikeuchi M, Kaino Y, Matsuda H. Synergism in insulin-like effects of molybdate plus H2O2 or tungstate plus H2O2 on glucose transport by isolated rat adipocytes. Biochem Pharmacol 1992; 44(1): 174-177. http://dx.doi.org/10.1016/0006-2952(92)90052-K [DOI via Crossref]   
79. Li J, Elberg G, Gefel D, Shechter Y. Permolybdate and pertungstate-potent stimulators of insulin effects in rat adipocytes: Mechanism of Action. Biochem 1995; 34: 6218-6225. [DOI via Crossref]    [DOI via Crossref]   
80. Panneerselvam SR and Govindasamy SI. Effect of sodium molybdate on the status of lipid,lipid peroxidation and antioxidant system in alloxan induced diabetic rats. 2004; Clin Chem Acta 345 (1-2), 93-98. [DOI via Crossref]    [Pubmed]   
81. Reul BA, Becker DJ, Ongemba LN, Henquin CJ, Brichard SM. Improvement of glucose homeostasis and hepatic insulin resistance in ob/ob mice given oral molybdate. J Endocrinol 1997; 155: 55-64.http://joe.endocrinologyjournals.org/content/155/1/55. full.pdf [DOI via Crossref]    [Pubmed]   
82. Ozcelikay AT, Becker DJ, Ongemba LN, Pottier AM, Henquin JC, Brichard SM. Improvement of glucose and lipid metabolism in diabetic rats treated with molybdate. Am J Physiol 1996; 270(2 Pt 1): E344-52. [Pubmed]   
83. Liu HK, Green BD, McClenaghan NH, McCluskey JT, Flatt PR. Long-term beneficial effects of vanadate, tungstate and molybdate on insulin secretion and function of cultured beta cells. Pancreas 2004; 28(4): 364-368. [Pubmed]    [DOI via Crossref]    [Pubmed]   
84. MacDonald K, Bailey J, MacRory C, Friis C, Vogels CM, Broderick T, Westcott SA. A newly synthesised molybdenum/ascorbic acid complex alleviates some effects of cardiomyopathy in streptozocin-induced diabetic rats. Drugs R D 2006; 7(1): 33-42. [DOI via Crossref]    [DOI via Crossref]   
85. Munoz MC, Barbera A, Domínguez J, Fernandez-Alvarez J, Gomis R, Guinovart JJ.. Effects of Tungstate, a New Potential oral antidiabetic agent in Zucker Diabetic Fatty Rats. Diabetes 2001; 50: 131-138. [DOI via Crossref]    [DOI via Crossref]   
86. Ballester J, Mu-oz MC, Domínguez J et al. Tungstate administration improves the sexual and reproductive function in female rats with streptozotocin-induced diabetes. Hum Reprod 2007; 22(8): 2128-2135. [DOI via Crossref]    [Pubmed]   
87. Barbera A, Fernardez-Averez J, Truce A, Gomis R, Guinovart JJ. Effects of tungstate in neontally streptozotocin-induced diabetic rats: mechanism leading to normalization of glycemia. Diabetologia 1997; 40: 143-149. [DOI via Crossref]    [Pubmed]   
88. Heidari Z, Mahmoudzadeh- Sagheb H, Moudi B. A quantitative study of sodium tungstate protective effect on pancreatic beta cells in streptozotocin-induced diabetic rats Micron 2008; 39(8): 1300-1305. [DOI via Crossref]    [DOI via Crossref]   
89. Yaghmaei P, Parivar K, Niksereshet F, Amini S, Masoudi A and Amini E. Pancreatic protective effects of sodium tungstate in streptozotocin-induced diabetic rats. Diab Met Syn: Clin Res Rev 2008; 2(4): 259-265.
90. Kawasaki E, Abiru N, Eguchi K. Prevention of type 1 diabetes: from the view point of β cell damage. Diabetes Res Clin Pract 2004; 66: S27-S32. http://www.ncbi.nlm.nih.gov/pubmed/15563975 [DOI via Crossref]    [Pubmed]   
91. Nagareddy PR, Vasudevan H, McNeill JH. Oral administration of sodium tungstate improves cardiac performance in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2005; 83(5): 405-411.[Pubmed]    [DOI via Crossref]    [Pubmed]   
92. Fernandez-Alvarez J, Barbera A, Nadal B, Barcelo-Batllori S, Piquer S, Claret M. Stable and functional regeneration of pancreatic beta-cell population in STZ-rats treated with tungstate. Diabetologia 2004; 47: 470-477. [DOI via Crossref]    [DOI via Crossref]   
93. Dominguez JE, Munoz MC, Zafra D et al. The antidiabetic agent sodium tungstate activates glycogen synthesis through an insulin receptor-independent pathway. 2003; 278(44): 42785-42794. [Pubmed]   
94. Nakhaee A, Bokaeian M, Akbarzadeh A, Hashemi M. Sodium tungstate attenuate oxidative stress in brain tissue of Streptozotocin-induced diabetic rats. Biol. Trace Elem. Res. 2010; 136(2): 221-231. [DOI via Crossref]    [DOI via Crossref]   
95. Altirriba J, Barbera A, Del Zotto H, Nadal B, Piquer S, Sánchez- Pla A, Gagliardino JJ, Gomis R.. Molecular mechanisms of tungstate-induced pancreatic plasticity: a transcriptomics approach. BMC Genomics 2009; 10: 406. [DOI via Crossref]    [DOI via Crossref]   
96. Barbera A, Rodriguez-Gil JE, Guinovart JJ. Insulin-like actions of tungstate in diabetic rats Normalization of hepatic glucose metabolism. J Biol Chem 1994; 269: 20047-20053. [Pubmed]   
97. Giron MD, Caballero JJ, Vargas AM, Suárez MD, Guinovart JJ, Salto R. Modulation of glucose transporters in rat diaphragm by sodium tungstate. FEBS lett 2003; 542(1-3): 84-88. [DOI via Crossref]    [DOI via Crossref]   
98. Foster JD, Young SE, Brandt TD, Nordlie RC. Tungstate: a potent inhibitor of multifunctional glucose-6-phosphatase. Arch Biochem. Biophys 1998; 354:125-132. [DOI via Crossref]    [Pubmed]   
99. Barbera A, Gomis RR, Parts N. Tungstate is an effective antidiabetic agent in streptozotocin-induced diabetic rat: a long-term study. Diabetologia 2001; 44: 507-513. [DOI via Crossref]    [DOI via Crossref]   
100. Tsiani E and Fantus IG. Vanadium compounds: biological actions and potential as pharmacological agents. Trends Endocrinol Metab 1997; 8: 51-58. [DOI via Crossref]   
101. Srivastava AK and Mehdi MZ. Insulino-mimetic and anti-diabetic effects of vanadium compounds Diabet Med 2005; 22: 2-13. [DOI via Crossref]    [DOI via Crossref]   
102. Vardatsikos G, Mehdi MZ, Srivastava AK. Enhanced phosphorylation of FOXO and GSK-3 by organo-vanadium complexes: potential role in insulino-mimesis. FASEB J 2008; 22: 614-610. http://www.fasebj.org/cgi/content/meeting_abstract/22/1_MeetingAbstracts/614.10
103. Hu R, He C, Liu J, Wu Y, Li J, Feng Z, Huang J, Xi XG, Wu Z. Effects of insulin-mimetic vanadyl-poly (gamma-glutamic acid) complex on diabetic rat model. J Pharm Sci 2010; 99(7): 3041-3047. [Pubmed]   
104. Lyonnet B, Martz M, Martin E. L’emploi thérapeutique des derives du vanadium. La Presse Médicale 1899; 32:191-192.
105. Verma S, Margaret CC, McNeill JH. Review article: nutritional factors that can favorably influence the glucose/insulin system: vanadium. J Am Coll Nutr 1998; 17(1): 11-18. [DOI via Crossref]    [Pubmed]   
106. Wojciech D, Anna G, Bohdan T, Anna MK. Influence of vanadyl sulphate [VOSO4] on biochemical activity and morphology of control and streptozotocin-diabetic rat liver golgi complexes. Pol J Pathol 2004; 55(1): 25-32.
107. Arya GS, Hedaytullah MD, Yadav RA, Sachan K. Treating diabetes mellitus with vanadium salts- a future prospectus: a review. Int J Pharm Sci Rev Res 2011; 8(2): 183-185.
108. Cam MC, Cros GH, Serrano JJ, Lazaro R, McNeill JH. In vivo antidiabetic actions of naglivan, an organic vanadyl compound in streptozotocin-induced diabetes. Diabetes Res Clin Pract 1993; 20(2): 111-121 [DOI via Crossref]    [DOI via Crossref]   
109. Tolman EL, Barris E, Burns M, Pansini A, Partridge R. Effects of vanadium on glucose metabolism in vitro. Life Sci 1979; 25: 1159-1164. [DOI via Crossref]    [DOI via Crossref]   
110. Meyerovitch J, Farfel Z, Sack J, Shechter Y. Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J Biol Chem 1987; 262(14): 6658-6662. [Pubmed]   
111. Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rosseti L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 95(6): 2501-2509. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
112. Jacques-Camarena O, Gonzalez-Ortiz M, Martinez-Abundis E, Lopez-Madrueno JF, Medina-Santillan R. Effect of vanadium on insulin sensitivity in patients with impaired glucose tolerance. Ann Nutr Metab 2008; 53(3-4): 195-198. [DOI via Crossref]    [Pubmed]   
113. Crans DC, Mahroof-Tahir M, Johnson MD et al. Vanadium (IV) and vanadium (V) complexes of dipicolinic acid and derivatives. synthesis, X-ray structure, solution state properties and effects in rats with STZ-induced diabetes Inorg Chim Acta 2003; 356:365-378.[DOI via Crossref]    [DOI via Crossref]   
114. Mehdi MZ, Pandey SK, Théberge JF, Srivastava AK. Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium.Cell Biochem Biophy 2006; 44(1): 73-81. [DOI via Crossref]    [DOI via Crossref]   
115. Crans DC. Chemistry and insulin-like properties of vanadium (IV) and vanadium (V) compounds. J Inorg Biochem 2000; 80: 123-131. [DOI via Crossref]   
116. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C. Vanadium treatment of type II diabetes: a view to the future. J Inorg Biochem 2009; 103: 554-558. [DOI via Crossref]    [DOI via Crossref]   
117. Zorzano A, Palacin M, Marti L, Garcia-Vicente S. Arylalkylamine vanadium salts as new anti-diabetic compounds. J Inorg Biochem 2009; 103: 559-566. [DOI via Crossref]    [DOI via Crossref]   
118. Scott DA. Crystalline insulin. Biochem J 1934; 28(4): 1592-1602. [PMC Free Fulltext]    [Pubmed]    [PMC Free Fulltext]   
119. Cusi K, Cukier S, DeFronzo RA, Torres M, Puchulu FM, Redondo JC. Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type II diabetes. J Clin Endocrinol Metab 2001; 86: 1410-1417.[DOI via Crossref]    [DOI via Crossref]   
120. Tunali S, Yanardag R. Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats. Pharmacol Res 2006; 53 (3): 271-277. [DOI via Crossref]    [Pubmed]   
121. Jansena J, Kargesb W, Rinka L. Zinc and diabetes clinical links and molecular mechanisms. J Nut Biochem 2009; 20: 399-341. [DOI via Crossref]    [DOI via Crossref]   
122. Marchesini G, Bugianesi E, Ronchi M, Flamia R, Thomaseth K, Pacini G.. Zinc Supplementation Improves Glucose Disposal in Patients With Cirrhosis. Metab Clin Exp 1998; 47(7): 792-798. [DOI via Crossref]    [DOI via Crossref]   
123. Sun Q, Dam RMV, Willett WC, Hu FB. Prospective Study of Zinc Intake and Risk of Type II Diabetes in Women. Diabetes Care 2009; 32(4): 629-634 [DOI via Crossref]    [DOI via Crossref]   
124. Anderson RA, Roussel PA, Zouari N, Mahjoub S, Matheau JM, Kerkeni A.. Potential antioxidant effects of zinc and chromium supplementation in people with type II diabetes mellitus. J Am Coll Nutr 2001; 20(3): 212-218. [DOI via Crossref]    [Pubmed]   
125. Faure P, Benhamou PY, Perard A., Halimi S, Roussel AM. Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions: effects of an oral zinc supplementation. Eur J Clin Nutr 1995; 49: 282-288. [Pubmed]    [Pubmed]   
126. Oh HM, Yoon JS. Glycemic control of type II diabetic patients after short-term zinc supplementation. Nut Res Prac 2008; 2(4): 283-288. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
127. Shisheva A, Gefel D, Shechter Y. Insulin like effects of zinc ion in vitro and in vivo. Preferential effects on desensitized adipocytes and induction of normoglycemia in streptozocin-induced rats. Diabetes 1992; 41(8): 982-988. [DOI via Crossref]    [Pubmed]   
128. Yoshikawa Y, Ueda E, Sakurai H, Kojima Y. Anti-diabetes effect of Zn(II)/carnitine complex by oral administration. Chem Pharm Bull 2003; 51(2): 230-1.[DOI via Crossref]    [DOI via Crossref]   
129. Yoshikawa Y, Ueda E, Miyake H, Sakurai H, Kojima Y. Insulinomimetic bis(maltolato)zinc(II) complex: blood glucose normaliz ing effect in KK-A(y) mice with type II diabetes mellitus. Biochem Biophys Res Commun 2001; 281(5): 1190-1193. [DOI via Crossref]    [DOI via Crossref]   
130. Adachi Y, Yoshida J, Kodera Y, Kiss T, Jakusch T, Enyedy EA et al. Oral administration of a zinc complex improves type II diabetes and metabolic syndromes. Biochem Biophys Res Commun 2006; 351(1): 165-70.[DOI via Crossref]    [DOI via Crossref]   
131. Ueda E, Yoshikawa Y, Ishino Y, Sakurai H, Kojima Y. Potential insulinominetic agents of zinc (II) complexes with picolinamide derivatives: preparations of complexes, in vitro and in vivo studies. Chem Pharm Bull 2002; 50(3): 337-40. [Pubmed]    [DOI via Crossref]   
132. Yoshikawa Y, Murayama A, Adachi Y, Sakurai H, Yasui H. Challenge of studies on the development of new Zn complexes (Zn (opt) (2)) to treat diabetes mellitus. Metallomics 2011; 3(7): 686-92. [Pubmed]    [DOI via Crossref]    [Pubmed]   
133. Duzguner V, Kaya S. Effect of zinc on the lipid peroxidation and the antioxidant defense systems of the alloxan-induced diabetic rabbits. Free Radic Biol Med 2007; 42: 1481-1486. [DOI via Crossref]    [DOI via Crossref]   
134. Partida-Hernandez G, Arrola F, Fenton B, Cabeza M, Roman-Ramos R. Effect of zinc replacement on lipid and lipoproteins in type II-diabetic patients. Biomed Pharmacol 2006; 60: 161-168. [DOI via Crossref]    [DOI via Crossref]   

This Article Cited By the following articles

Schiff base oxovanadium complexes resist the assembly behavior of human islet amyloid polypeptide
Journal of Inorganic Biochemistry 2018; 186(): 60.

1
 
Nutritional value, phytochemicals and antioxidant property of six wild edible plants consumed by the Bodos of North-East India
MNM 2017; 10(3): 259.

2
 
In vitrostudies on the pleotropic antidiabetic effects of zinc oxide nanoparticles
Nanomedicine 2016; (): .

3
 
Assessment of Molybdenum Induced Alteration in Oxidative Indices, Biochemical Parameters and Sperm Quality in Testis of Wistar Male Rats
Asian J. of Biochemistry 2015; 10(6): 267.

4
 
Inhibition of human amylin fibril formation by insulin-mimetic vanadium complexes
Metallomics 2014; 6(5): 1087.

5
 
How to Cite this Article
Pubmed Style

Geeta Pandey, Gyan Chand Jain, Nidhi Mathur. Therapeutic potential of metals in managing diabetes mellitus: a review. J Mol Pathophysiol. 2012; 1(1): 63-76. doi:10.5455/jmp.20120410105457


Web Style

Geeta Pandey, Gyan Chand Jain, Nidhi Mathur. Therapeutic potential of metals in managing diabetes mellitus: a review. http://www.jmolpat.com/?mno=15403 [Access: December 13, 2018]. doi:10.5455/jmp.20120410105457


AMA (American Medical Association) Style

Geeta Pandey, Gyan Chand Jain, Nidhi Mathur. Therapeutic potential of metals in managing diabetes mellitus: a review. J Mol Pathophysiol. 2012; 1(1): 63-76. doi:10.5455/jmp.20120410105457



Vancouver/ICMJE Style

Geeta Pandey, Gyan Chand Jain, Nidhi Mathur. Therapeutic potential of metals in managing diabetes mellitus: a review. J Mol Pathophysiol. (2012), [cited December 13, 2018]; 1(1): 63-76. doi:10.5455/jmp.20120410105457



Harvard Style

Geeta Pandey, Gyan Chand Jain, Nidhi Mathur (2012) Therapeutic potential of metals in managing diabetes mellitus: a review. J Mol Pathophysiol, 1 (1), 63-76. doi:10.5455/jmp.20120410105457



Turabian Style

Geeta Pandey, Gyan Chand Jain, Nidhi Mathur. 2012. Therapeutic potential of metals in managing diabetes mellitus: a review. Journal of Molecular Pathophysiology, 1 (1), 63-76. doi:10.5455/jmp.20120410105457



Chicago Style

Geeta Pandey, Gyan Chand Jain, Nidhi Mathur. "Therapeutic potential of metals in managing diabetes mellitus: a review." Journal of Molecular Pathophysiology 1 (2012), 63-76. doi:10.5455/jmp.20120410105457



MLA (The Modern Language Association) Style

Geeta Pandey, Gyan Chand Jain, Nidhi Mathur. "Therapeutic potential of metals in managing diabetes mellitus: a review." Journal of Molecular Pathophysiology 1.1 (2012), 63-76. Print. doi:10.5455/jmp.20120410105457



APA (American Psychological Association) Style

Geeta Pandey, Gyan Chand Jain, Nidhi Mathur (2012) Therapeutic potential of metals in managing diabetes mellitus: a review. Journal of Molecular Pathophysiology, 1 (1), 63-76. doi:10.5455/jmp.20120410105457





Most Viewed Articles
  • Prevention and treatment of cyclophosphamide and ifosfamide-induced hemorrhagic cystitis
    Ertan Altayl, Ercan Malkoc, Bilal Frat Alp, Ahmet Korkmaz
    J Mol Pathophysiol. 2012; 1(1): 53-62
    » Abstract & References » doi: 10.5455/jmp.20120321060902

  • Therapeutic potential of metals in managing diabetes mellitus: a review
    Geeta Pandey, Gyan Chand Jain, Nidhi Mathur
    J Mol Pathophysiol. 2012; 1(1): 63-76
    » Abstract & References » doi: 10.5455/jmp.20120410105457

  • Modulation of glucose and lipid metabolism in adrenalectomised rats given glycyrrhizic acid
    Yan Qi Ng, Chanchal Chandramouli, So Ha Ton, Khalid Abdul Kadir, Fahreen Haque, Melissa Sharmini Tamotharan
    J Mol Pathophysiol. 2012; 1(1): 3-20
    » Abstract & References » doi: 10.5455/jmp.20120221113254

  • Oxidative stress in acne vulgaris: an important therapeutic target
    Ahmed Salih Sahib, Haidar Hamid Al-Anbari, Ahmed R. Abu Raghif
    J Mol Pathophysiol. 2013; 2(1): 27-31
    » Abstract & References » doi: 10.5455/jmp.20130127102901

  • Indoleamine 2,3-dioxygenase (IDO) and tryptophan dioxygenase (TDO) mRNA expression in oral squamous cell carcinoma cells is actively and differentially modulated
    Nicholas P Booth, Wells Brockbank, Samuel Oh, Karl Kingsley
    J Mol Pathophysiol. 2012; 1(1): 29-36
    » Abstract & References » doi: 10.5455/jmp.20120609040915

  • Cytotoxic effects of conjugated linoleic acids on human hepatoma cancer cells (HepG2)
    Achenef Melaku, Arifah Abdul Kadir, Fauziah Othman, Goh Yong Meng, Awis Qurni Sazili
    J Mol Pathophysiol. 2012; 1(1): 43-48
    » Abstract & References » doi: 10.5455/jmp.20120127120302

  • Role of intracellular adhesion molecules-1 (ICAM-1) in the pathogenesis of toxoplasmic retinochoroiditis
    Nagwa Mostafa El-Sayed, Khadiga Ahmed Ismail
    J Mol Pathophysiol. 2012; 1(1): 37-42
    » Abstract & References » doi: 10.5455/jmp.20120307042400

  • Periodontitis as a risk factor for cardiovascular disease with its treatment modalities: a review
    Amit Bhardwaj, Shalu V. Bhardwaj
    J Mol Pathophysiol. 2012; 1(1): 77-83
    » Abstract & References » doi: 10.5455/jmp.20120206034643

  • A new hope in biomedical research area; Journal of Molecular Pathophysiology
    Ahmet Korkmaz, Turgut Topal
    J Mol Pathophysiol. 2012; 1(1): 1-2
    » Abstract & References » doi: 10.5455/jmp.20120604123051

  • Arterial stiffness and inflammation in patients on hemodialysis
    Vaia D. Raikou, Despina Kyriaki, John N. Boletis
    J Mol Pathophysiol. 2012; 1(1): 21-28
    » Abstract & References » doi: 10.5455/jmp.20120530044656

  • Most Downloaded
  • Prevention and treatment of cyclophosphamide and ifosfamide-induced hemorrhagic cystitis
    Ertan Altayl, Ercan Malkoc, Bilal Frat Alp, Ahmet Korkmaz
    J Mol Pathophysiol. 2012; 1(1): 53-62
    » Abstract & References » doi: 10.5455/jmp.20120321060902

  • Oxidative stress in acne vulgaris: an important therapeutic target
    Ahmed Salih Sahib, Haidar Hamid Al-Anbari, Ahmed R. Abu Raghif
    J Mol Pathophysiol. 2013; 2(1): 27-31
    » Abstract & References » doi: 10.5455/jmp.20130127102901

  • Therapeutic potential of metals in managing diabetes mellitus: a review
    Geeta Pandey, Gyan Chand Jain, Nidhi Mathur
    J Mol Pathophysiol. 2012; 1(1): 63-76
    » Abstract & References » doi: 10.5455/jmp.20120410105457

  • A new hope in biomedical research area; Journal of Molecular Pathophysiology
    Ahmet Korkmaz, Turgut Topal
    J Mol Pathophysiol. 2012; 1(1): 1-2
    » Abstract & References » doi: 10.5455/jmp.20120604123051

  • Indoleamine 2,3-dioxygenase (IDO) and tryptophan dioxygenase (TDO) mRNA expression in oral squamous cell carcinoma cells is actively and differentially modulated
    Nicholas P Booth, Wells Brockbank, Samuel Oh, Karl Kingsley
    J Mol Pathophysiol. 2012; 1(1): 29-36
    » Abstract & References » doi: 10.5455/jmp.20120609040915

  • Cytotoxic effects of conjugated linoleic acids on human hepatoma cancer cells (HepG2)
    Achenef Melaku, Arifah Abdul Kadir, Fauziah Othman, Goh Yong Meng, Awis Qurni Sazili
    J Mol Pathophysiol. 2012; 1(1): 43-48
    » Abstract & References » doi: 10.5455/jmp.20120127120302

  • The chemical composition and pharmacological activities of geopropolis produced by Melipona fasciculata Smith in northeast Brazil
    MARIA ARAUJO, MICHELLE BUFALO, BRUNO CONTI, ARY FERNANDES JR., BORYANA TRUSHEVA, VASSYA BANKOVA, JOSE SFORCIN
    J Mol Pathophysiol. 2015; 4(1): 12-20
    » Abstract & References » doi: 10.5455/jmp.20150204115607

  • Modulation of glucose and lipid metabolism in adrenalectomised rats given glycyrrhizic acid
    Yan Qi Ng, Chanchal Chandramouli, So Ha Ton, Khalid Abdul Kadir, Fahreen Haque, Melissa Sharmini Tamotharan
    J Mol Pathophysiol. 2012; 1(1): 3-20
    » Abstract & References » doi: 10.5455/jmp.20120221113254

  • Periodontitis as a risk factor for cardiovascular disease with its treatment modalities: a review
    Amit Bhardwaj, Shalu V. Bhardwaj
    J Mol Pathophysiol. 2012; 1(1): 77-83
    » Abstract & References » doi: 10.5455/jmp.20120206034643

  • Arterial stiffness and inflammation in patients on hemodialysis
    Vaia D. Raikou, Despina Kyriaki, John N. Boletis
    J Mol Pathophysiol. 2012; 1(1): 21-28
    » Abstract & References » doi: 10.5455/jmp.20120530044656

  • Most Cited Articles
  • The chemical composition and pharmacological activities of geopropolis produced by Melipona fasciculata Smith in northeast Brazil
    MARIA ARAUJO, MICHELLE BUFALO, BRUNO CONTI, ARY FERNANDES JR., BORYANA TRUSHEVA, VASSYA BANKOVA, JOSE SFORCIN
    J Mol Pathophysiol. 2015; 4(1): 12-20
    » Abstract & References » doi: 10.5455/jmp.20150204115607
    Cited : 11 times [Click to see citing articles]

  • Importance of HSP70 in Livestock - at cellular level
    SMRUTI RANJAN MISHRA, TAPAN KUMAR PALAI
    J Mol Pathophysiol. 2014; 3(2): 30-32
    » Abstract & References » doi: 10.5455/jmp.20141028023220
    Cited : 8 times [Click to see citing articles]

  • Precision Cut Cancer Tissue Slices in Anti-Cancer Drug Testing
    Florian T Unger, Susanne Bentz, Jana Krger, Cordula Rosenbrock, Janina Schaller, Katja Pursche, Annika Sprssel, Hartmut Juhl, Kerstin A David
    J Mol Pathophysiol. 2015; 4(3): 108-121
    » Abstract & References » doi: 10.5455/jmp.20151023055556
    Cited : 7 times [Click to see citing articles]

  • Consumption of a High-Fat Breakfast on Consecutive Days Alters the Area-under-the-curve for Selected CVD Biomarkers
    Brian K McFarlin, Katie C Carpenter, Adam S Venable, Eric A Prado, Andie L Henning
    J Mol Pathophysiol. 2015; 4(1): 6-11
    » Abstract & References » doi: 10.5455/jmp.20150127045909
    Cited : 6 times [Click to see citing articles]

  • Therapeutic potential of metals in managing diabetes mellitus: a review
    Geeta Pandey, Gyan Chand Jain, Nidhi Mathur
    J Mol Pathophysiol. 2012; 1(1): 63-76
    » Abstract & References » doi: 10.5455/jmp.20120410105457
    Cited : 5 times [Click to see citing articles]

  • Prevention and treatment of cyclophosphamide and ifosfamide-induced hemorrhagic cystitis
    Ertan Altayl, Ercan Malkoc, Bilal Frat Alp, Ahmet Korkmaz
    J Mol Pathophysiol. 2012; 1(1): 53-62
    » Abstract & References » doi: 10.5455/jmp.20120321060902
    Cited : 5 times [Click to see citing articles]

  • The effect of ethanol extract of Nigerian ficus glumosa leaf on liver function in Diabetic rats
    Umar Zayyanu Usman, Mahaneem Binti Mohamed
    J Mol Pathophysiol. 2015; 4(3): 103-107
    » Abstract & References » doi: 10.5455/jmp.20151022125106
    Cited : 4 times [Click to see citing articles]

  • Proximate and vitamin C analysis of wild edible plants consumed by Bodos of Assam, India
    Hwiyang Narzary1, Ananta Swargiary2 and Sanjay Basumatary3*
    J Mol Pathophysiol. 2015; 4(4): 128-133
    » Abstract & References » doi: 10.5455/jmp.20151111030040
    Cited : 4 times [Click to see citing articles]

  • Disulfiram Neurotoxicity: Decrements in Ethanolamine, Serine, and Inositol Glycerophospholipids.
    Paul L Wood, Ryan S Alexander, Cameron C Felty
    J Mol Pathophysiol. 2014; 3(3): 33-37
    » Abstract & References » doi: 10.5455/jmp.20141122032817
    Cited : 2 times [Click to see citing articles]

  • Inflammatory phenotype of circulating endothelial-derived microparticles in chronic heart failure patients with metabolic syndrome
    Alexander E Berezin, Alexander A Kremzer, Tatyana A Samura, Tatyana A Berezina
    J Mol Pathophysiol. 2015; 4(2): 51-58
    » Abstract & References » doi: 10.5455/jmp.20150402063644
    Cited : 2 times [Click to see citing articles]